Кольца ньютона. Описание, история эксперимента и подготовка оборудования для определения длины световой волны с помощью колец ньютона Кольца ньютона объяснение

Пример колец Ньютона

Описание

Классическое объяснение явления

Во времена Ньютона из-за недостатка сведений о природе света дать полное объяснение механизма возникновения колец было крайне трудно. Ньютон установил связь между размерами колец и кривизной линзы; он понимал, что наблюдаемый эффект связан со свойством периодичности света, но удовлетворительно объяснить причины образования колец удалось лишь значительно позже Томасу Юнгу . Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны . Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу .

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны , то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстаёт от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Δ = m λ {\displaystyle \Delta =m\lambda } - max,

где m {\displaystyle m} - любое целое число, - длина волны.

Напротив, если вторая волна отстаёт от первой на нечётное число полуволн, то колебания , вызванные ими, будут происходить в противоположных фазах , и волны гасят друг друга.

Δ = (2 m + 1) λ 2 {\displaystyle \Delta =(2m+1){\lambda \over 2}} - min,

где m {\displaystyle m} - любое целое число, λ {\displaystyle \lambda } - длина волны.

Для учёта того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода (разность оптических длин пути).

Если n r {\displaystyle nr} - оптическая длина пути, где n {\displaystyle n} - показатель преломления среды, а r {\displaystyle r} - геометрическая длина пути световой волны, то получаем формулу оптической разности хода :

n 2 r 2 − n 1 r 1 = Δ . {\displaystyle n_{2}r_{2}-n_{1}r_{1}=\Delta .}

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами тёмных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на π {\displaystyle \pi } ; этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном - эллипсы.

Радиус k -го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

r k = (k − 1 2) λ R n , {\displaystyle r_{k}={\sqrt {\left(k-{1 \over 2}\right){\frac {\lambda R}{n}}}},}

где R {\displaystyle R} - радиус кривизны линзы, k = 1 , 2 , . . . , {\displaystyle k=1,2,...,} λ {\displaystyle \lambda } -

Интерференция

Интерференцией света называют пространственное перераспределение светового потока при наложении двух или нескольких когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина).

Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны.

Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волны.

Волновые фронты, распространяющиеся от двух краев отверстия, пересекаются между собой. Там, где встречаются два гребня волны, яркость увеличивается, но там, где гребень встречается с впадиной, волны гасят друг друга, создавая темные области. В результате вместо простого изображения отверстия получается ряд чередующихся светлых и темных полос. Это явление называется интерференцией.

Интерференция возникает, когда две волны с одинаковой
длиной волны (1, 2) Движутся по одному пути. Они взаимо-
действуют, образуя новую волну (3). Если волны совпадают
по фазе(А), то интенсивность результирующей волны оказы-
вается выше, чем каждой из них. Если волны слегка сдвинуты
по фазе (В), то интенсивность результирующей волны близка
к интенсивности исходных волн. Если исходные волны нахо-
дятся в противофазе (B), то они полностью гасят друг друга

Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути.

При разности хода, равной четному числу длин полуволн наблюдается интерференционный максимум.

При разности хода, равной нечетному числу длины полуволн наблюдается интерференционный минимум.

Когда выполняется условие максимума для оной длины световой волны, то оно не выполняется для других волн.

Поэтому освещённая белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тонких пленках применяется для контроля качества обработки поверхностей, для просветления оптики

При освещении одного и того же участка светом различных источников интерференционные явления не наблюдаются.

Для получения устойчивой интерференционной картины необходимо обеспечить когерентность, или согласование, двух систем волн. Источники должны испускать когерентные волны, т.е. волны, обладающие одним периодом и неизменной разностью фаз на протяжении времени, достаточного для наблюдения.

В независимых источниках свет испускают различные атомы, условия, излучения которых быстро и беспорядочно меняются.

Интерференционная картина, получаемая от независимых источников сохраняется неизменной очень короткое время, а затем сменяется другой, с иным расположением максимумов и минимумов. Так как время, необходимое для наблюдения, измеряется, как сказано, тысячными и более долями секунды, то за это время интерференционные картины успеют смениться миллионы раз. Мы наблюдаем результат наложения этих картин. Такое наложение размывает картину

Если луч света расщепить на два, а затем заставить их соединиться вновь, то между ними возникнет интерференция - при условии, что пути, пройденные лучами, различны. Гребни и впадины двух волновых фронтов могут оказаться «не в фазе» (не совпадать точно), но световые лучи все равно про взаимодействуют. Такие интерференционные эффекты создаются двумя очень близко расположенными поверхностями, например тонкими пленками или двумя тесно сжатыми пластинками стекла, и приводят к появлению окрашенных полос. Радужные цвета, видимые в оперении птиц и на крыльях некоторых бабочек, вызваны явлением интерференции; тонкая структура крыла или пера образует своего рода дифракционную решетку или тонкую пленку.
Поскольку интерференция вызывается малым различием в величинах путей, пройденных волнами одной и той же длины, этот эффект можно использовать для обнаружения очедь малых изменений длины. Для этой цели служат приборы, называемые интерферометрами.

Б
Тонкие пленки, такие, как мыльные пузыри или нефтяные пятна на воде, обычно сияют всеми
цветами радуги. Часть света, проходящего через пленку, отражается от ее внутренней
поверхности и интерферирует с проходящим светом. Проходя пути различной длины, волны,
соответствующие некоторым цветам, на (А) – красному, оказываются в фазе и усиливают друг
друга. Другие волны, на (В) – показано синим, полностью гасят друг друга и потому невидимы.

Идеальным источником света является квантовый генератор (лазер), по своей природе является когерентным.

Дифракция

При прохождении света через малое круглое отверстие на экране вокруг цетрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и темных полос.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света.

Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой.

Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка.

Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.

Пусть на решетку падает монохроматический определенной длины волны свет. В результате дифракции на каждой щели свет распространяется не только в первоначальном направлении, но и по всем другим направлениям. Если за решеткой поставить собирающую линзу, то на экране в фокальной плоскости все лучи будут собираться в одну полоску

Параллельные лучи, идущие от краев соседних щелей, имеют разность хода дельта=d*sinφ, где d-постоянна решетки – расстояние между соответствующими краями соседних щелей, называемое периодом решетки, φ – угол отклонения световых лучей от перпендикуляра к плоскости решетки.

При разности хода, равной целому числу длин волн d*sinφ = k*λ, наблюдается интерференционный максимум для данной длины волны.

Условие интерференционного максимума выполняется для каждой длины волны при своем значении дифракционного угла φ.

В результате при прохождении через дифракционную решетку пучок белого света разлагается в спектр.

Угол дифракции имеет наибольшее значение для красного света, так как длина волны красного света больше всех остальных в области видимого света. Наименьшее значение угла дифракции для фиолетового света.

каждый луч света распространяется прямолинейно, что достигается непрерывным рядом волн, несущих колебательное движение в пространстве. Колебания всех волн, исходящих из источника света, складываются, создавая сферические волновые фронты, состоящие из чередующихся пиков и впадин энергии.
Тень, отбрасываемая каким-либо предметом, редко имеет четкие границы. Это объясняется тем, что источник света обычно не является точкой, а имеет некоторые размеры. Если источник бесконечно мал, то следовало бы ожидать, что он даст абсолютно резкую тень, поскольку, как считается, световые лучи распространяются прямолинейно. Однако на самом деле волны огибают край предмета – этот эффект называется дифракцией. Когда световые волны попадают на край предмета, ближайшие к нему точки начинают действовать как источники световых волн, распространяющихся во всех направлениях, – в результате световые лучи загибаются за край предмета. Длина волны света столь мала, что дифракцию трудно обнаружить на больших предметах, но она становится весьма заметной при прохождении света через малые отверстия, размеры которых сравнимы с длиной волны. Это происходит в дифракционной решетке, где свет проходит через очень узкие щели.

Дифракция возникает, когда световая
волна огибает край предмета. Обычно
этот эффект очень слаб. Однако если
световые волны проходят через отверс-
тие, размеры которого сравнимы с длиной
волны (для видимого света около
0,000055 см), то дифракция становится
наблюдаемой. Световые волны распростра-
няются от краев отверстия как от источ-
ников, и на экране образуется картина
чередующихся светлых и темных полос.

Дифракционная решетка представляет собой
сетку из тонких близко лежащих штрихов.
Когда через неё пропускают белый свет,
различные его составляющие отклоняются
под разными углами и расщепляются на сово-
купность цветов.

Принцип Гюйгенса:

Каждую точку среды, которой достигла волна, можно рассматривать как источник вторичных сферических волн, распространяющихся со скоростью, свойственной среде. Огибающая поверхность, то есть поверхность, касающаяся всех сферических вторичных волокон в том положении, которого они, достигнут к моменту времени t, и представляет собой волновой фронт в этот момент.

Кольца Ньютона

Ко́льца Нью́тона - кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину

Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному)

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.

Пример колец Ньютона

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Max, где - любое целое число, - длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

- min, где - любое целое число, - длина волны.

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

Оптическая длина пути,

Оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на , этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном - эллипсы.

Радиус k -го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

R - радиус кривизны линзы;

k = 1, 2, …;

λ - длина волны света в вакууме;

n - показатель преломления среды между линзой и пластинкой.

Функция рассеяния точки

Основным элементом при образовании изображения любого объекта являетсяизображение точки . Однако оптическая система никогда не изображает точку в виде точки . (А может прямая не прямая, а квадрат - не квадрат?) С одной стороны этому препятствуют аберрации оптической системы, с другой, - волновая природа света. Действие этих факторов приводит к тому, что изображение точки оказывается нерезким, расплывчатым. Мелкая структура объектов передается неправильно: изображения двух очень близко расположенных точек сливаются в одно пятно; изображения решеток сливаются в серый фон и т.п. По этим сведениям получают грубое качественное представление об изобразительных свойствах объектива.

Функция рассеяния точки (ФРТ, point spread function, PSF) - это функция, описывающая зависимость распределения освещенности от координат в плоскости изображения, если предмет - это светящаяся точка в центре изопланатической зоны (Условие изопланатизма : при смещении точки ее изображение тоже смещается на пропорциональную величину , где V - обобщенное увеличение).

Теория дифракции показывает, что даже при совершенном (безаберрационном) объективе изображение точки имеет вид некоторого светлого пятна, обладающего определенными габаритами и характерным распределением энергии в нем. Пятно имеет центральный максимум освещенности (диск Эри ), постепенно снижающийся до нуля, образуя вокруг центрального максимума темное кольцо. Концентрично к темному кольцу располагается светлое кольцо. Посмотрите на изображение в начале поста.

Безаберационная функция рассеяния точки симметрична относительно оптической оси. Центральный максимум содержит 83.8% всей энергии (его высота равна единице), первое кольцо - 7.2% (высота 0.0175), второе 2.8% (высота 0.0045), третье 1.4% (высота 0.0026), четвертое 0.9%. Общий вид распределения интенсивности функции рассеяния точки (картину Эри ) вы видите на рисунке.

Центральный максимум ФРТ называется диском Эри (Airy). Диаметр диска Эри в реальных координатах на изображении:

Где - апертура осевого пучка.

Диск Эри в общем случае может быть не круглым, если меридиональная и сагиттальная апертуры различны.

На функцию рассеяния точки влияет неравномерность пропускания по зрачку. Если пропускание уменьшается к краям зрачка, то центральный максимум ФРТ расширяется, а кольца исчезают. Если пропускание увеличивается к краям зрачка, то центральный максимум сужается, а интенсивность колец увеличивается. Эти изменения по-разному влияют на структуру изображения сложного объекта, и, в зависимости от требований, используются различные функции пропускания, "накладываемые" на область зрачка. Это явление называется аподизацией.

На рисунке вы видите: слева -- функция пропускания по зрачку; справа -- функция рассеяния точки.

Рассмотрим другой случай, когда переменной величиной является толщина пластины d . Возьмем два параллельных луча 1 и 2 от монохроматического источника, падающих на поверхность прозрачного клина с углом  (рис. 5).

В результате отражения от верхней и нижней поверхностей клина когерентные световые лучи 1 и 1", 2" и 2" интерферируют в точках B 1 и В 2 , усиливая или ослабляя друг друга в зависимости от толщины клина в точках падения. Совокупности точек с одинаковой освещенностью образуют интерференционные полосы, которые в этом случае называются полосами равной толщины, поскольку каждая образована лучами, отраженными от мест с одинаковой толщиной клина.

Так как интерферирующие лучи пересекаются вблизи поверхности клина, то принято говорить, что полосы равной толщины локализованы вблизи поверхности клина. Их можно наблюдать невооруженным глазом, если угол  достаточно мал (1), или использовать микроскоп.

Кольца Ньютона

Частным случаем полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ воздушного зазора между плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны R (рис.6).

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхности воздушного зазора между линзой и пластинкой. Для наглядности лучи 1 и 1", отраженные от воздушного зазора, изображены рядом с падающим лучом. При наложении отраженных лучей возникают полосы равной толщины. Толщина воздушного зазора d меняется симметрично в разные стороны относительно точки касания линзы и пластины. Поэтому полосы равной толщины имеют вид концентрических окружностей, которые принято называть кольцами Ньютона.

Определим радиус r кольца Ньютона, образованного лучами, отраженными отповерхностей воздушного зазора толщиной d. Из рис.6 следует, что

Поскольку d  R , то членом d 2 можно пренебречь и тогда

(11)

Толщина зазора определяет оптическую разность хода , которая, с учетом потери полуволны на отражение, равна

(12)

Подставив сюда d из формулы (11), получим

(13)

Если
, то наблюдается светлое кольцо максимальной интенсивности, для радиуса которого формула (13) дает

(14)

где
– номер кольца. Если
, то наблюдается темное кольцо. Радиус т- го темного кольца равен

(15)

Из формул (14) и (15) следует, что радиусы колец Ньютона и расстояние между ними растут с увеличением радиуса кривизны линзы (или другими словами, с уменьшением угла между линзой и пластинкой).

Если на линзу падает белый свет, то в отраженном свете наблюдается центральное темное пятно, окруженное системой цветных колец, которые соответствуют интерференционным максимумам для разных длин волн. В проходящем све­те потеря полуволны /2 при отражении света от воздушной прослойки происходит дважды. Поэтому светлым кольцам в отраженном свете будут соответствовать темные кольца в проходящем свете и наоборот.

При наличии любых, даже незначительных дефектов на поверхности линзы и пластинки правильная форма колец искажается, что позволяет осуществлять быстрый контроль качества шлифовки плоских пластин и линз.

Лабораторная работа 302

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

Цель работы : изучить оптическую схему для наблюдения колец Ньютона, определить радиус кривизны линзы.

Оптическая схема для наблюдения колец Ньютона в отраженном свете представлена на рис. 7.

Свет от источника S проходит через конденсорную линзу К и попадает на наклонный светофильтр Ф, расположенный под углом 45° к направлению луча. Отразившись от светофильтра, свет попадает на линзу Л и далее – на воздушный клин, образованный линзой и пластиной П. Лучи, отраженные от верхней и нижней поверхностей клина, проходят сквозь линзу Л в обратном направлении и попадают в окуляр Ок зрительной трубы. Интерференционная картина, возникающая при их наложении, имеет вид чередующихся светлых и темных колец, интенсивность которых убывает к периферии (см. рис.6). В центре колец находится темное пятно минимум нулевого порядка.

Общий вид прибора для наблюдения колец Ньютона показан на рис. 8.

Он состоит из микроскопа 1, на предметном столике которого закреплена лампа накаливания 2, светофильтр 3, и плосковыпуклая линза 4, прижатая к плоскопараллельной пластине 5. Лампа питается от сети 220В через понижающий трансформатор 6. Микроскоп снабжен микрометрическим винтом 7, с помощью которого зрительная труба 8 микроскопа перемещается относительно предметного столика.

Для измерения радиуса колец окуляр микроскопа имеет одинарную и двойную реперные линии. Отсчеты производятся по миллиметровой шкале 9 и круговой шкале 10, проградуированной в сотых долях миллиметра.

Измерив радиус любого из колец Ньютона, можно рассчитать радиус кривизны линзы К, воспользовавшись формулами (14) или (15). Однако из-за деформации стекла в точке соприкосновения линзы и пластины точность такого расчета оказывается невысока. Для повышения точности радиус кривизны R рассчитывают по разности радиусов двух колец r m и r n . Записав формулу (15) для темных колец с номерами т и п, получим выражение:

(15)

При расчетах удобнее пользоваться формулой, в которой радиусы колец заменены на их диаметры d m и d n

(16)

  1. Явление полного внутреннего отражения.
  2. Интерференция света от двух отверстий (схема Юнга).
  3. Интерференция света в плоскопараллельной пластине.
  4. Интерференция света в тонком клине (мыльная пленка).
  5. Кольца Ньютона.
  6. Дифракция света на щели.
  7. Дифракционные решетки.
  8. Поляроиды.
  9. Закон Малюса.
  10. Закон Брюстера.

Описание опытов

Опыт 1. Явление полного внутреннего отражения

Оборудование: источник лазерного излучения, стеклянный параллелепипед со скошенной гранью.

Явление полного внутреннего отражения заключается в том, что световой луч, падающий на границу раздела двух оптически прозрачных сред, не преломляется во вторую среду, а полностью отражается в первую. В этом случае выполняется закон

где n 1 - показатель преломления среды, откуда падает световой луч, n 2 - показатель преломления второй среды, куда луч не преломляется, причем n 2 меньше n 1 , α пр - предельный угол падения света, т.е. для всех углов падения α больших α пр явление полного внутреннего отражения.

Световой луч от лазерного источника через скошенную грань вводится внутрь стеклянного параллелепипеда и падает на границу раздела стекло - воздух под углом больше предельного. Внутри параллелепипеда наблюдаем зигзагообразный путь светового луча. При каждом отражении от границы раздела сред выполняется явление полного внутреннего отражения.

Прикоснемся смоченным в воде пальцем к какой-либо области отражения. У воды показатель преломления больше чем у воздуха. Условия полного внутреннего отражения нарушаются, и траектория движения светового луча за областью касания искажается.

Опыт 2. Интерференция света от двух отверстий (схема Юнга)

Оборудование: источник лазерного излучения, непрозрачный экран с двумя одинаковыми круглыми отверстиями.

Световая волна от лазерного источника освещает два отверстия в непрозрачном экране. Согласно принципу Гюйгенса - Френеля отверстия в экране - это вторичные когерентные источники. Следовательно, волны от этих источников тоже когерентны и могут интерферировать. На экране наблюдаем систему темных (минимумы) и светлых (максимумы) полос - это и есть интерференционная картина от двух отверстий.

Опыт 3. Интерференция света в плоскопараллельной пластине

Оборудование: дуговая ртутная лампа, тонкая слюдяная пластина.

Световая волна от ртутной лампы отражается от передней и задней плоскостей слюдяной пластинки и падает на экран наблюдения. "Передняя" и "задняя" отраженные волны когерентны и могут интерферировать. На экране наблюдаем систему сине-зелено-оранжевых полос - это и есть интерференционная картина от плоскопараллельной пластины. Окраска полос объясняется наличием в излучении ртутной лампы нескольких длин волн (свет от ртутной лампы не монохроматический).

Опыт 4. Интерференция света в тонком клине (мыльная пленка)

Оборудование: кювета с мыльным раствором, металлическая рамка, дуговая лампа белого света, оптическая скамья.

Световые волны, отраженные от передней и задней плоскостей мыльной пленки, когерентны и могут интерферировать. Пленка натянута на проволочную рамку, которая расположена вертикально. Раствор стекает вниз и формирует клин с толстой частью внизу и тонким краем вверху. Интерференционная картина представляет, как видно на экране, систему многоцветных полос узких и ярких в области толстой части клина и широких в области тонкой части клина. Многоцветность интерференционных максимумов объясняется тем, что белый свет не монохроматичен. Изменение размеров - ширины полос - связано с толщиной клина.

Опыт 5. Кольца Ньютона

Оборудование: прибор "Кольца Ньютона", дуговая лампа белого света, оптическая скамья.

Прибор "Кольца Ньютона" представляет собой плоско-выпуклую линзу, положенную выпуклой стороной на плоскую стеклянную пластину, которые заключены во внешнюю обойму. Таким образом, между линзой и пластиной образован воздушный клин. Свет от источника падает на прибор. Пучки, отраженные от выпуклой поверхности линзы и внутренней поверхности пластины, когерентны и могут интерферировать друг с другом. На экране наблюдаем интерференционную картину в виде многоцветных колец - это максимумы интерференции. Радиусы интерференционных колец могут быть рассчитаны по формулам

где k - порядок интерференции (номер кольца), λ - длина волны света (длина волны определяет цвет кольца, т.е. красный, зеленый, синий и т.д.), R - радиус кривизны выпуклой поверхности линзы. Формулы записаны для случая, когда наблюдение интерференционной картины ведется в отраженном свете.

При изменении силы, сжимающей линзу и пластину, будет изменяться форма воздушного клина и, как следствие, будет изменяться вид интерференционной картины.

Опыт 6. Дифракция света на щели

Оборудование: спектральная щель, источник лазерного излучения.

Когда световая волна встречает на своем пути резкие неоднородности (например, край непрозрачного объекта, щель в непрозрачном экране и т.д.), то она в своем поведении перестает подчиняться законам геометрической оптики. Такие эффекты называются дифракционными эффектами, или просто дифракцией.

Лазерный источник формирует на экране наблюдения световое пятно. Поместим на пути светового пучка щель. На экране теперь наблюдается система световых пятен. Говорят, свет дифрагирует на щели, и на экране наблюдаются дифракционные спектры (максимумы), разделенные темными промежутками (минимумами). Положение минимумов на экране можно рассчитать, как

где а - ширина щели, λ - длина волны света, φ m - номер минимума (всегда целое число без нуля), m - угол дифракции, угол отсчитывается от направления на центральный максимум к направлению на данный минимум.

При увеличении ширины щели дифракционная картина уменьшается. Ее максимумы и минимумы сближаются и смещаются к центральному максимуму.

При уменьшении ширины щели дифракционная картина увеличивается. Максимумы и минимумы разбегаются. Центральный максимум занимает практически всю видимую часть дифракционной картины.

Опыт 7. Дифракционные решетки

Оборудование: дуговая лампа белого света, оптическая скамья, диафрагма-щель, набор дифракционных решеток.

Система одинаковых, расположенных в одной плоскости параллельно друг другу и на равных расстояниях щелей называется дифракционной решеткой.

Оптическая скамья формирует на экране резкое изображение диафрагмы-щели, освещенной дуговой лампой. На пути этого светового потока помещаем дифракционную решетку. Теперь на экране наблюдаем размытое изображение диафрагмы-щели и многоцветные полосы (максимумы дифракционной картины), разделенные темными промежутками (минимумы дифракционной картины) и расположенные с обеих сторон от изображения щели. Размытое изображение диафрагмы-щели имеет белый цвет - это центральный или нулевой максимум. Цветные полосы - это дифракционные максимумы разных порядков. Условие максимума в картине, полученной от дифракционной решетки, имеет вид

где k - порядок максимума, λ - длина волны, φ k - угол дифракции на k-й максимум, d = a + b - постоянная решетки или период решетки, а - ширина щели, b - ширина темного (непрозрачного) промежутка между щелями.

Условие минимума в дифракционной картине рассчитываем как

где m - порядок (номер) минимума, λ - длина волны света, а - ширина щели в решетке, φ m - угол дифракции на m-й минимум.

У решеток с разными периодами дифракционные спектры имеют разную ширину. Чем больше период, тем уже спектр. В спектральных приборах используются решетки с большим числом щелей на единицу длины решетки (до 3000 тысяч щелей на 1 мм).

Опыт 8. Поляроиды

Оборудование: поляроиды в рамках с флажками, подсвет.

Естественный свет - это электромагнитная волна, в которой векторы напряженности электрического и магнитного поля изменяют свое численное значение и направление колебаний хаотическим образом. Природные и подавляющее большинство искусственных источников света излучают естественный свет.

Используя некоторые технические приемы и устройства, можно создать такие условия, что векторы напряженности электрического и магнитного поля в волне будут изменяться по определенному закону. Такую волну называют поляризованной волной.

Устройства, поляризующие волны, называют поляризаторами.

Одним из простейших и широко распространенных поляризаторов является поляроид. Поляроид представляет собой прозрачное основание (стекло, пластик и т.д.), на которое в определенном порядке напылены кристаллы йод-хинина, имеющие игольчатую линейную форму. Кристаллы йод-хинина расщепляют векторы напряженностей полей на две взаимно перпендикулярные составляющие и одну из этих составляющих поглощают. Следовательно, за поляроидом в световой волне векторы напряженностей будут совершать колебания только в одной плоскости. Такая волна называется линейно поляризованной волной.

Наши органы зрения не различают поляризации света. Чтобы убедиться в том, что за поляроидом волна линейно поляризована, можно воспользоваться вторым поляроидом.

На фоне подсвета наблюдаем два поляроида, заключенных в рамки с флажками. Свет, прошедший сквозь поляроиды, менее яркий, чем идущий от подсвета. Это понятно, так как половину светового потока поляроид поглотил. Прошедший свет линейно поляризован. Флажок показывает направление колебания вектора напряженности электрического поля.

Наложим поляроиды друг на друга. Если флажки параллельны, то линейно поляризованный свет от первого поляроида будет пропущен вторым поляроидом. Если флажки будут перпендикулярны, то второй поляроид должен поглотить свет с такими колебаниями вектора напряженности электрического поля. Что и наблюдается в опыте.

Опыт 9. Закон Малюса

Оборудование: подсвет, поляроиды в рамках с флажками.

Если естественная световая волна проходит сквозь два последовательно расположенных поляроида, то интенсивность прошедшего света будет определяться взаимной ориентацией поляроидов. Значение интенсивности прошедшего света рассчитывается по закону Малюса

где I 0 - интенсивность естественного света, - интенсивность линейно поляризованного света, вышедшего из первого поляроида, I - интенсивность света, вышедшего из второго поляроида, она зависит от угла.

Когда флажки параллельны, φ = 0, и интенсивность прошедшего через поляроиды света максимальна - равна . Когда флажки перпендикулярны , , интенсивность прошедшего через поляроиды света равна нулю.

При произвольной ориентации поляроидов или при изменении угла φ от 0 до интенсивность света принимает некоторое значение в границах от до нуля.

Опыт 10. Закон Брюстера

Оборудование: четырехгранная пирамида из черного стекла, источник белого света, поляроид.

Получить линейно поляризованную световую волну можно и методом отражения естественного света от диэлектрической плоскости. При этом должен выполняться закон Брюстера

где n 2 - показатель преломления диэлектрика, от которого отражается волна, n 1 - показатель преломления среды, α бр - угол падения волны на границу раздела среда - диэлектрик. Индекс "бр" от фамилии Брюстер. Угол α бр - это строгий угол. Для любых других углов падения больше или меньше α бр получить полностью линейно поляризованный свет нельзя.

Естественный свет падает на пирамиду и отражается в виде четырех пятен - "зеркальных зайчиков". Грани пирамиды установлены к падающему свету под углами Брюстера, следовательно, отраженные световые пучки линейно поляризованы. Поляризация пучков такая, что вектор напряженности электрического поля в них параллелен граням. Таким образом, "зайчики" от соседних граней поляризованы во взаимно перпендикулярных плоскостях. Это легко проверить, если ввести между источником света и пирамидой поляроид.

Поворачивая поляроид вокруг светового пучка, отмечаем, что когда флажок параллелен плоскости грани, от нее свет отражается максимально ярко, когда перпендикулярен - "зайчик" пропадает (его интенсивность равна нулю). Это находится в полном соответствии с законом Малюса.

В форме колец, расположенных концентрически вокруг точки касания двух сферич. поверхностей либо плоскости и сферы. Впервые описаны в 1675 И. Ньютоном. Интерференция света происходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся поверхности; этот зазор играет роль тонкой плёнки (см. Оптика тонких слоев ).Н.к. наблюдаются и в проходящем, и - более отчётливо - в отражённом свете. При освещении монохроматич. светом длины волны Н. к. представляют собой чередующиеся тёмные и светлые полосы (рис. 1). Светлые возникают в местах, где разность фаз между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равна(п = 1, 2, 3, ...) (т. е. разность хода равна чётному числу полуволн). Тёмные кольца образуются там, где разность фаз равна Разность фаз лучей определяется толщиной зазора с учётом изменения фазы световой волны при отражении (см. Отражение света) . Так, при отражении от границы воздух - стекло фаза меняется на а при отражении от границы стекло - воздух фаза остаётся неизменной. Поэтому в случае двух стеклянных поверхностей (рис. 2), с учётом различий в условиях отражения от ниж. и верх. поверхностей зазора (потеря полуволны), т -етёмное кольцо образуется, если т. е. при толщине зазора Радиус r т т -го кольца определяется из треугольника А-О-С:

Рис. 1. Кольца Ньютона в отражённом свете.

Рис. 2. Схема образования колец Ньютона: О - точка касания сферы радиуса R и плоской поверхности; - толщина воздушного зазора в области образования кольца радиуса r m .

Откуда для тёмного m-го кольца r т = Это соотношение позволяет с хорошей точностью определятьпо измерениям r т . Если известна, Н. к. можно использовать для измерения радиусов поверхностей линз и контроля правильности формы сферич. и плоских поверхностей. При освещении немоно-хроматич. (напр., белым) светом Н. к. становятся цветными. Наиб. отчётливо Н. к. наблюдаются при малой толщине зазора (т. е. при использовании сферич. поверхностей больших радиусов).